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Research Article

Ant intelligence for solving optimal path-covering problems with
multi-objectives

XIA LI*, JINQIANG HE and XIAOPING LIU

School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, China

(Received 8 June 2008; in final form 20 October 2008 )

Conventional methods have difficulties in forming optimal paths when raster

data are used and multi-objectives are involved. This paper presents a new

method of using ant colony optimization (ACO) for solving optimal path-

covering problems on unstructured raster surfaces. The novelty of this proposed

ACO includes the incorporation of a couple of distinct features which are not

present in classical ACO. A new component, the direction function, is used to

represent the ‘visibility’ in the path exploration. This function is to guide an ant

walking toward the final destination more efficiently. Moreover, a utility

function is proposed to reflect the multi-objectives in planning applications.

Experiments have shown that classical ACO cannot be used to solve this type of

path optimization problems. The proposed ACO model can generate near

optimal solutions by using hypothetical data in which the optimal solutions are

known. This model can also find the near optimal solutions for the real data set

with a good convergence rate. It can yield much higher utility values compared

with other common conventional models.

Keywords: Ant colony optimization; Path-covering; Multi-objectives; Site

selection; GIS

1. Introduction

A common type of site selection problems in geographical information system (GIS)

involves the identification of a number of points (optimized locations) for sitting

facilities, such as factories, schools, hospitals, shopping centers, and warehouses.

Heuristic search methods can be developed in GIS to tackle these point-sitting and

covering problems (Li and Yeh 2005). Another type of spatial optimization

problems is related to line features or path finding. Path-finding problems have

attracted widespread research interests in many disciplines, such as robot path

planning (Kruusmaa and Willemson 2003), emergency evacuation, logistics

management, infrastructure planning, and travel demand analysis (Tanga and

Pun-Cheng 2004). The objective is to choose the best travel path according to the

costs in terms of time, distance or safety (Kruusmaa and Willemson 2003). The

path-covering optimization is usually much more complex than the point-covering

optimization. It is because a path consists of many connected cells (points). The

optimization involves a huge solution space because there are an infinite number of

possible routes between origins and destinations on a continuous surface (Zhang

and Armstrong 2008).
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Functions have been provided in most GIS to find the optimal paths between

origins and destinations based on the least-cost. This type of approach usually

adopts the arc-node network model. The Dijkstra’s algorithm, which has been

widely used to solve the shortest-path problem, is to find the shortest path from a

single source node to all other nodes in a network (Evans and Minieka 1992). It

should be noted that these techniques for path optimization are mainly carried out

with respect to costs. The connectivity property of node-arc representation of road

networks is required with the support of the network data storage structure (Tanga

and Pun-Cheng 2004). The Dijkstra’s algorithm is designed for tracing the shortest

path in a network on an accumulated cost surface with nodes connected by weighted

links. A virtual network has to be constructed to use this algorithm in the grid layers

of GIS (Yu et al. 2003). Many such studies have been reported on fine-tuning of the

least-cost-path algorithms for solving real-world problems (Collischonn and Pilar

2000, Zhu et al. 2001, Yu et al. 2003).

There are a few studies on solving path optimization problems in a raster space.

Dijkstra’s (1959) shortest path algorithm has been revised to find the least-cost-path

in a raster data format (Yu et al. 2003). Their studies indicate that the least-cost-

path optimization based on raster data can generate more practical solutions than

that on vector data. However, the methods of path-covering optimization in a raster

space have not been well explored because of the complexities. An example is to

identify the optimal path across a region for providing the maximum service

coverage to various types of discrete targets (e.g. settlements). In transport planning,

maximum population coverage along the path is a major concern as well as the

minimum transportation distance. This type of optimization problem is very

difficult since the population usually has an inhomogeneous and discrete

distribution. The solution space becomes extremely huge if multi-objectives are

considered for solving these spatial search problems. Although there are a few

studies on some simple path-covering problems, these models only concern the

optimal coverage of known line features (Boffey and Narula 1998, Huang et al.

2006). The optimal path is selected among these known networks, which are used as

the constraints for the optimization. This situation may not be true for many

planning applications. For example, the question may be the creation of an optimal

path for building a subway with the maximum service coverage to the population.

The use of raster surfaces can provide a more convenient environment for solving

this type of optimization problem. However, existing algorithms are not expected to

generate such optimal paths on raster surfaces by considering service coverage.

Recently, natural swarm intelligence has been used to tackle a variety of complex

computation problems, such as functional optimization, route finding, scheduling,

structural optimization, vehicle routing and image and data analysis (Sharma et al.

2006). The swarm intelligence is usually designed by imitating the flocking of birds

or the swarming of insects such as bees and ants. Ant colony optimization (ACO)

which was first proposed by Dorigo et al. (1991) is to solve various optimization

problems by simulating the behavior of ants in seeking foods. In spite of the

simplicity of ant individuals, ant colonies present a highly structured social

organization for completing complex tasks. Studies indicate that a set of

cooperating artificial ants with simple swarm intelligence can effectively solve hard

optimization problems (Colorni et al. 1991). For example, ACO was used to solve

the traveling salesman problem (TSP) (Dorigo and Gambardella 1997a, b). The

program of Ant-Miner is developed to discover patterns from raw data (Parpinelli

840 X. Li et al.
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et al. 2002). Attempts have been made on using ant algorithms to find the optimal

solutions to the network routing (Kwang and Weng 2002), location and allocation

(Sharma et al. 2006), sitting of service facilities (Liu et al. 2005, Li et al. in press) and

capturing line features (Huang et al. 2006).

Few studies have been reported on the application of ACO for tackling these

path-covering optimization problems involving multi-objectives. This paper will

present a new method of using ant intelligence for generating optimal paths under

continuous surfaces. Compared with general ACO, this path-covering ACO model

has incorporated a number of unique features for facilitating the spatial search. The

novelty includes the use of a direction function, which provides some ‘vision’

capabilities for assisting the walking on unstructured raster surfaces by artificial

ants. This function is to balance the trade-off between local attractions and global

attractions during the path exploration. A utility function is proposed to represent

the multi-objectives of a specific planning application. All these features are crucial

for solving hard combinatorial path-covering problems.

2. ACO for solving path-covering problems

2.1 The ant algorithm

ACO is a kind of computation algorithms for solving optimization problems. The

optimization is carried out by simulating the behavior of real ants in finding foods

through collaboration. Ants release some substance called pheromone when they

pass a route. The released pheromone trail will evaporate with the passing of time.

Ants have a strong ability of adapting to possible changes in the environment. They

can effectively find the new shortest path once the old one is no longer feasible (e.g.

there is a new obstacle in the path). At the beginning of food search, an ant

randomly selects a path for exploration. A shorter path is deposited with a larger

amount of pheromone trail. Ants move along the path on which pheromone trail is

plentiful. As a result, a more amount of pheromone is deposited on this path. At the

final stage, all the ants will be attracted to the shortest path because of this positive

feedback mechanism. Experiments indicate that ACO is effective for finding the

optimal solution under complex combinatorial situations (Dorigo et al. 1991).

The mechanism of classical ACO can be explained through the solution to the

TSP which is to find a closed tour of minimal length connecting N given cities

(Dorigo et al. 1996). In the algorithm, an artificial ant chooses a city to visit with a

probability which is determined by two components: (1) the amount of pheromone

trail tuv(t) on the path; and (2) the visibility (travel distance) guv(t). In addition, a

tabu list, tabuk, is used to prevent an ant from going to the visited cities again. This

probability that an ant moves from city u to city v is given as follows (Dorigo et al.

1996):

pk
uv tð Þ~

tuv tð Þ½ �a: guv tð Þ½ �bP

k [Sk

tuk tð Þ½ �a: guk tð Þ½ �b if v [Sk

0 otherwise

8
><

>:
ð1Þ

where pk
uv tð Þ is the transition probability from city u to city v for the kth ant at time t,

tuv(t) is the amount of pheromone trail on path (u,v), and guv(t) is a heuristic

function related to the visibility (distance). The set, Sk, represents the cities that can

be visited next time without any repetition.

Ants for path generation with multi-objectives 841
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The parameters of a and b control the relative importance of trail versus visibility

(distance). A larger value of a indicates that the trail intensity will have more

influences on the probability. In contrast, a larger value of b means that there is a

greater contribution of the visibility (distance) to the probability.

At each iteration (t), the amount of pheromone trail is updated according to the

following equations (Dorigo et al. 1996):

tuv tz1ð Þ~ 1{rð Þtuv tð ÞzDtuv tð Þ ð2Þ

Dtuv tð Þ~
Xm

k~1

Dtk
uv tð Þ ð3Þ

where r is a coefficient such that (12r) represents the evaporation of trail between t

and t + n. Dtk
uv tð Þ is the quantity of trail substance per length unit laid on path (u,v)

by the kth ant between time t and t + n.

Dtk
uv tð Þ is calculated according to the following equation (Dorigo et al. 1996):

Dtk
uv tð Þ~

Q
Lk

if the kth ant visits u, vð Þ
0 otherwise

(

ð4Þ

where Q is a constant, and Lk is the tour length or the total travel cost of the kth ant.

An ant has a higher probability of selecting the shorter route between two cities.

The heuristic function guv(t) is defined as the inverse of the distance or the visibility

between cities u and v (Dorigo et al. 1996):

guv tð Þ~ 1

duv

ð5Þ

where duv is the distance between city u and city v.

2.2 Modifying ACO for adapting to optimal path-covering problems

2.2.1 The modified ant algorithm. Ant algorithms seem to be straightforward for

solving path-finding problems because of ants’ strong exploration capability.

Artificial ants with simple swarm intelligence could be used to determine the best

paths for constructing subways, highways and pipelines. In most situations, the

optimization should be implemented on raster surfaces for solving practical

problems. A number of objectives, such as the minimum total travel distance and

maximum service coverage, could be incorporated for the optimization. The

formation of an optimal path under such situations is a hard combinatorial

optimization problem.

In the optimization, an artificial ant can visit any cell on unstructured raster

surfaces and deposit pheromone on the visited cells during path exploration. The

process is based on the positive feedback of ant intelligence. However, optimal path

formation is a difficult process because of using unstructured surfaces and multi-

objectives. An ant could move randomly on the two-dimensional raster surface if

there are no constraints and regulations. Therefore, conventional ACO should be

modified for adapting to the path-covering problems by incorporating a number of

unique features: (1) a direction function for providing some ‘vision’ capability; (2) a

utility function for representing multi-objectives; and (3) strategies for tabu

updating and pheromone updating.

842 X. Li et al.
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During ants’ walking, there are eight direct neighboring cells (ni) for a central cell

(c) on a raster surface (figure 1). These eight neighbors are represented by n1, n2, n3,

n4, n5, n6, n7 and n8 for eight possible moving directions. There are infinite

combinations of the walking schemes by forming a path between an origin and a

destination. An ant could move randomly without finding optimal paths based on

conventional ant algorithms. For better convergence, the traditional heuristic

function for visibility is replaced by using a more sophisticated direction func-

tion j hcvi
ð Þ½ �. The transition probability is then revised by using the following

equation:

pk
cvi

tð Þ~{

tcvi
tð Þ½ �a: j hcvi

tð Þð Þ½ �b
P

k [Sk

tcvi
tð Þ½ �a: j hcvi

tð Þð Þ½ �b
if vi [Sk

0 otherwise

8
><

>:
ð6Þ

where c is the central cell (the current occupied position) for ant k, ni is one of the

eight neighbors (moving direction) that the ant will move to at time t, and Sk is the

cells can be visited next time without any repetition.

Like many heuristic algorithms, ACO uses a roulette-wheel selection mechanism

to decide which cells will be visited based on the probability. In the virtual wheel,

each moving direction is associated with a sector which has its area proportional to

the probability. This assumes that a larger sector will be more likely selected based

on the gambling strategy. As a result, an ant will have a greater chance to walk in the

direction of a larger probability value. It is apparent that the results from different

simulations are not totally the same. The created paths should be subject to some

uncertainties because of the stochastic characteristics.

Path optimization usually concerns two common objectives in planning practice:

(1) the maximum service coverage to the population (benefits); and (2) the minimum

total travel distance (costs). A path that can provide the service to the covered

population (Ppathcov) within the buffer of Rcov subject to the total travel length

(Lpath). The optimization should be implemented by satisfying these two objectives

as much as possible.

2.2.2 The pheromone component. An ant will move from the central cell to one of

its eight direct neighbors at each step of path exploration. The transition probability

is partially related to the pheromone density tcvi
tð Þ½ � according to equation (6). An

ant is expected to walk toward the neighboring cell which has the largest amount of

pheromone. However, the difference of pheromone is very small between these eight

direct neighbors because of spatial autocorrelation. This could cause the ant to walk

in a random direction. Therefore, the pheromone at the cells of a further distance (r)

should be used to determine the probability of walking direction correctly (figure 2).

For example, the pheromone at v3 is replaced by that at V ’3 which has the largest

Figure 1. An ant visits one of its eight neighboring cells (ni) from a central cell (c).

Ants for path generation with multi-objectives 843
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amount of pheromone at that direction:

tcvi
tð Þ~tcVi

tð Þ ð7Þ

At the beginning, each cell has an equal amount of pheromone density

tcvi
0ð Þ~0½ �. The amount of pheromone trail will increase if the cell is visited by

an ant during the optimization. The evaporation will cause the trail density to

decrease if the cell is not visited. The amount of pheromone trail is updated

according to equations (2) and (3).

The variable, Lk, in equation (4) represents the tour length or the total travel cost

of a path for the kth ant. The term of 1/Lk can be regarded as the utility of this path.

A more general form for representing this term is based on a utility function, fk. This

function provides a convenient means to evaluate the quality of a path because

objectives can be conveniently incorporated. For example, this function can be

defined by addressing these two conflicting objectives, the maximum service

coverage and the minimum travel distance. A way to combine these two conflicting

objectives is based on the following ratio function:

fk~
Pk

Lk

ð8Þ

Figure 2. Ants attracted by the pheromone at a further distance.

844 X. Li et al.
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where Pk is the total covered population along the path within the buffer of Rcov,

and Lk is the tour length for the kth ant respectively.

Equation (4) is thus revised to incorporate this utility function:

Dtk
cvi

tð Þ~
Qfk if the kth ant visits c, við Þ

0 otherwise

(

~

QPk
Lk

if the kth ant visits c, við Þ

0 otherwise

( ð9Þ

The advantage is that this utility function can be conveniently defined and

modified for a specific application without changing the model structure. Multi-

objectives could be incorporated by modifying this utility function. Although this

study only defines two objectives (the maximum service coverage and the minimum

travel distance), more objectives can be incorporated by properly defining this utility

function. For example, a linear weighted combination could be used to represent

more than two objectives. The definitions of this utility function should be subject to

domain knowledge. The use of this utility function can thus allow ACO adapted to

the solution of various path optimization problems with multi-objectives.

2.2.3 The heuristic component. The traditional heuristic function cannot be

directly used for implementing complex path optimization on raster surface. In

this study, the heuristic function is replaced by using a direction function, which

considers both local attractions and global attractions for providing some ‘vision’

capability. An ant explores various possible combinations for generating the

maximum utility in terms of these two objectives – service coverage and travel

distance. For satisfying the first objective, the movement of an ant is guided by the

population density in local neighborhood. The ant will be attracted to the cells of

large local population density so that the path can cover the maximum population

there. It is expected that the total travel distance will become much longer than that

of the optimal path if an ant is guided by just considering the factor of local

population density. For satisfying the second objective, the ant is encouraged to

move towards its final destination during path exploration. Therefore, the

movement of an ant is heuristically guided by two ‘forces’ – towards the cells of

large local population coverage and towards the final destination.

The direction function is devised to balance the trade-off between the maximum

local service coverage and the minimum total travel distance (toward the final

destination). First, the local covered population (Plocalcov) is obtained by summing

the population according to the buffer of Rcov (figure 3). The cell (Emax) of the

maximum local covered population (Plocalmax) in the neighborhood is identified for

representing local attractions. An ant is encouraged to walk in the direction of the

maximum local population coverage. However, the ant should also move toward the

final destination with some incentives. A direction function is defined to address this

trade-off (figure 3):

j hcvi
tð Þ½ �~exp m cos h1 tð Þ½ �zn cos h2 tð Þ½ �f g ð10Þ

where h1 is the angle between the line (cvi) and the line (cEmax), h2 is the angle be-

tween the line (cvi) and the line (cD), m is the weight for the attraction of the service

coverage to the population, and n is the weight for the attraction of the destination.

Ants for path generation with multi-objectives 845
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The above direction function plays a role on determining which direction an ant will

probably move toward at the next step. The first component, which is in favor of

smaller angle h1, is to address the attraction of the maximum local population

coverage. A larger value of j hcvi
ð Þ will be obtained if the ant moves toward the

neighboring cell which has the largest population density. The second component,

which is in favor of smaller angle h2, is to guide the ant toward the ultimate destination.

The value of n is set to one before m can be heuristically defined. There are usually

substantial variations of Plocalmax at different central cells because of the

inhomogeneous distribution of population. The optimal path is more likely to pass

the neighborhood of a larger value of Plocalmax for producing large service coverage.

An ant should not spend too much time on exploring the neighborhood which has a

small population. The ant will probably move toward the destination if there is no

large population in the neighborhood. The weight, m, is then used to reflect the

variation of Pcavmax in the whole region:

m~2Plocalmax=P’localmax ð11Þ
where P’localmax is the maximum of Plocalmax in the study area.

Figure 3. The trade-off between the local population coverage and the total travel distance.

846 X. Li et al.
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2.2.4 A modified strategy for updating the tabu list. A special strategy is proposed

to define the tabu list for facilitating the optimal path formation. In TSP, the tabu

list only stores the visited cities which should not be visited again in the next

iterations by an ant. This strategy is not completely appropriate for this study

because the number of unvisited cells is very large. More cells should be included in

the tabu list for two reasons. Firstly, if an ant just explores a neighborhood, the

increase in the service coverage cannot compensate the increase in the travel

distance. Secondly, unconstrained walking will cause the overlapping of the service

coverage and thus reduce the total served population. A special strategy of using a

stricter tabu list is proposed to avoid these two situations. This strategy is to

encourage an ant to move forward instead of backward according to a coding

system. This strategy is different from that of traditional TSP methods.

First, the codes, i51, 2, 3, …, are given to represent the backward positions of a

walking ant from the current cell to the original one (figure 4). A larger buffer

distance Ri
tabu

� �
around the path is defined with the increase of i (moving backward).

The cells within the buffer are included in the tabu list although they are not visited

before. This can significantly reduce the chance of walking backward by an ant. The

buffer distance Ri
tabu

� �
is defined by using the following simple rules:

R1
tabu~1:0 when i51 and

Figure 4. A strategy of using a stricter tabu list for encouraging ants moving forward.

Ants for path generation with multi-objectives 847
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Ri
tabu~i|

ffiffi
2
p

2
when i.1 (The buffer distance increases with the increase

of i);

if Ri
tabuw2|Rcov then Ri

tabu~2|Rcov

2.2.5 Additional strategies for pheromone updating. Equations (2), (3) and (9) are

the basis of pheromone updating. In traditional TSP, the pheromone is increased if a

place is visited by an ant. The path formation cannot be completed by just using this

simple strategy. Some modifications are required for producing more effective
pheromone updating. First, the pheromone at the cells near the destination (e.g.

within a 10610 window around the destination) is set to high values so that ants can

more easily move towards the destination. Moreover, the following three strategies

are used for pheromone updating:

1. A cell may be passed by many possible routes in the exploration. If the

pheromone of a cell is updated during each visit, the information of the best

route can be lost because of the average effects of all the routes. Therefore,

only the best utility value will be recorded for a cell if it has many routes
passed. This can prevent the path formation from trapping at local optimum.

2. A moving window of 363 is then used to rank the best utility values in the

neighborhood. Only these cells with the first top three utility values will

update the pheromone. The purpose of steps 1–2 is to keep the important

paths, but ignoring some trivial paths.

3. A ‘minority’ strategy is complementarily adopted to maintain the diversity of

solutions. This is crucial for preventing the degradation of solution population.

Some incentives are given to new emerging paths although they have relative

low amounts of pheromone at the beginning. Only these cells will update the

pheromone if their pheromone is higher than the average pheromone.

2.2.6 Posterization procedures. A path generated by this proposed algorithm may

still be subject to some noises or uncertainties because of the large solution space.

Some posterization procedures are required to improve the path shape. A

constructed path may consist of some redundant cells or unnecessary curves. In

this study, the thinning procedure is based on four templates for removing

redundant cells (figure 5(a)). The straightening procedure is based on eight templates

for removing unnecessary curves (figure 5(b) and (c)).

3. Model implementation and results

Experiments were carried out to test if the proposed ACO model can solve the

difficult path optimization problems. Three sets of spatial data were used to

facilitate the validation (figure 6). The first two sets are hypothetical data in which
the optimal solutions are known. The use of hypothetical data can allow the easy

verification of the optimization results. The third set of data is from the 2003 census

data of Guangzhou, which is available at the street-block unit. All these data have

the same size of 2506250 cells. In the last set of data, each cell represents an area of

1006250 m on the ground.

Table 1 lists the parameters that are used in this proposed ACO model. The first

five parameters were set according to classical ACO (Dorigo et al. 1996). Rcov was

848 X. Li et al.
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Figure 5. Posterization procedures of thinning and straightening for improving the final
shape of a path: (a) thinning; (b) straightening 1; (c) straightening 2.

Figure 6. Three types of population density surfaces: (a) hypothetical data set 1; (b)
hypothetical data set 2; (c) census data of Guangzhou.
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specifically used to represent the buffer distance that can provide the service to the

population. In this study, the value of Rcov was assumed to be 10, which is 1 km on

the ground. The pheromone at the cells of a further distance (r) was used to

determine the probability of walking direction correctly. The appropriate value of r

was determined by experiments. Figure 7 has clearly indicated that the best utility

value can be obtained when r53 for the study area.

In the first scenario, the population density decreases from the ridge (central line),

and the origin and the destination are just situated on the ridge (figure 6(a)). It is

easy to know that the optimal path should follow the central line for generating the

maximum utility. Figure 8(a) and table 2 clearly show that the proposed ACO can

find the near optimal solution because their shapes and utility values are very close

Table 1. Parameters used in this ACO path-covering model.

Iteration Ants a b r Rcov r

200 20 2 1 0.9 10 3

Figure 7. Determining the best value of r by experiments.

Figure 8. Near optimal paths identified by the proposed ACO for the hypothetical data sets:
(a) hypothetical data set 1; (b) hypothetical data set 2.
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between the known result and the simulation. The difference is only 0.89% in terms

of their utility values.

In the second scenario, the destination is located away from the ridge (figure 6(b)).

This pattern is slightly more complicated compared with that of the first scenario

(figure 6(a)). Figure 8(b) shows the optimal path identified by this proposed ACO

method. The optimal path follows the central line for the first half part, and then

switches to the destination for the second half part.

This ant algorithm was then applied to a real data set for testing its effectiveness

of solving practical spatial optimization problems. The original vector data were

converted into raster data with the resolution of 100 m. The actual population

distribution is much more complex than those of hypothetical data (figure 6(c)).

Figure 9 is the simulation result for the near optimal path using ant intelligence.

Figure 10 shows that the average utility value and the maximum utility value of

these paths will both increase significantly at the initial stage. These values will

become stabilized when the iteration reaches about 100–120. This indicates that this

ant algorithm has a good convergence rate for finding the optimal path or near

optimal one. One simulation will spend about 4 hours for completing an optimal

path by using a computer with a Pentium IV 3.2 GHz CPU.

Table 2. The utility values between the known result and the simulation for scenario 1.

Known result ACO The difference

11509 11407 0.89%

Figure 9. A near optimal path identified by the proposed ACO for Guangzhou data set.
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Figure 11 clearly shows the advantages of this proposed ACO over classical ACO

for the path-covering optimization. The process of path exportation is based on the

pheromone updating of artificial ants. Figure 11(a) shows the optimization process

by using this proposed ACO which has incorporated more heuristics. At the

beginning, all the cells have equal amount of pheromone. Initial potential paths will

Figure 10. Utility improvement with iterations by the proposed ACO: (a) average utility; (b)
maximum utility.

Figure 11. Optimal path formation based on pheromone updating: (a) proposed ACO; (b)
classical ACO.
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appear if some cells are visited more often. Some of these paths will be gradually

deposited with more amounts of pheromone if they can generate higher utility

values. The pheromone on the background cells will evaporate because they are less

visited by ants. At the final stage, the optimal path is identified as other paths

disappear according to the positive feedback mechanism.

Figure 11(b) shows the process of optimal path exploration by using the classical

ACO model. It is very clear that the pheromone will disappear at the midway from

the origin to the destination. An ant cannot complete a path because of the lack of

the vision capability. Therefore, the classical ACO is unsuitable for solving these

path-covering problems. The used of the direction function is crucial for guiding an

ant towards the final destination.

Heuristic algorithms are subject to some uncertainties. The stability of repeated

simulations is another important indicator for assessing the validity of the proposed

model. Figure 12(a) is the overlay of the optimal paths from 10 repeated simulations.

It clearly shows that the proposed ACO can repeat the simulation results although

there are some minor differences. Moreover, the simulations can be also repeated by

changing the walking direction. There are two different types of walking - forward

(from the origin to the destination) and backward (from the destination to the

origin). It is expected that the simulated patterns should be very similar between the

forward walking and backward walking. This assumption has been confirmed by

the experiment (figure 12(b)). Table 3 also compares the best utility values obtained

from 10 different simulations by the forward walking and backward walking

respectively. The variations are very small because these two types of walking yield

the similar mean values and small standard deviation values.

Figure 12. The stability of repeated simulations between (a) forward and (b) backward
walking.

Table 3. The best utility values obtained from 10 different simulations.

Sim1 Sim2 Sim3 Sim4 Sim5 Sim6 Sim7 Sim8 Sim9 Sim10 Mean Std.

Forward
walking

8479 8245 8626 8694 8701 8578 8214 8403 8312 8639 8489.1 185.6

Backward
walking

8629 8390 8304 8365 8599 8727 8534 8237 8443 8514 8474.2 154.1
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The evaluation of this proposed model can also be performed by comparing it

with some conventional methods. Since the utility function as described in

equation (8) represents the two objectives (the maximum service coverage and the

minimum travel distance), it is fair to use this function as an indicator for the

comparison. A problem is that existing methods cannot completely address these

two objectives simultaneously. We have to use two available methods, modified

Dijkstra’s algorithms, for the comparison. The first experiment is based on the

modified Dijkstra’s least-cost algorithm using raster data (Yu et al. 2003). It can

generate the least accumulated cost, but cannot generate the maximum population

coverage around the path. Therefore, it cannot produce the highest utility value. The

second experiment is to use a moving window of 10610 to sum the population first.

The Dijkstra’s least-cost algorithm is then applied to this summed population

surface for generating the path. This method has some buffering effect for

addressing the population coverage consideration.

Figure 13 is the paths formed by these two modified Dijkstra’s algorithms.

Figure 14 compares the total utility values of these paths generated by these two

Figure 13. The paths identified by the Dijkstra method: (a) Dijkstra; (b) Dijkstra-buffer.

Figure 14. Comparison of the total utility values between the modified Dijkstra methods
and the proposed ACO method.
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Dijkstra’s methods and the proposed ACO method. It is obvious that the simple

Dijkstra path has the least utility value. The Dijkstra-buffer path shows slight

improvement of the utility over the simple Dijkstra path. However, it is only the

proposed method that can produce the highest utility value among all these

methods. The proposed method has the improvement of the utility value by 28.3 and

23.1% respectively, compared with the simple Dijkstra and the Dijkstra-buffer

methods.

4. Conclusion

Path optimization often needs to satisfy both maximum service coverage (benefits)

and minimum development costs. The incorporation of artificial intelligence in GIS

is crucial for solving this type of multi-objective optimization problems.

Conventional path-finding models are mainly based on the network data model.

Spatial search could become much more difficult to solve if it is implemented on

unstructured raster surfaces. In some situations, optimal paths should be created

from scratch without prior knowledge of networks. Although there are some studies

on networking analysis, path-covering problems have received much less attention

compared with the point-covering problems. It is because the path-covering

problems with multi-objectives on unstructured raster surfaces have a huge solution

space. Even conventional heuristics have difficulties in finding the feasible solutions

to these hard combinatorial problems.

This study has demonstrated that simple ant intelligence can provide a promising

tool for solving optimal path-covering problems with multi-objectives. Artificial

ants are faced with a huge set of combinatorial options during path exploration.

Significant modifications should be carried out for adapting ACO to the solution of

path-covering problems. Experiments have shown that classical ACO cannot

complete a path on raster surfaces because of the lack of vision capability. Artificial

ants cannot be guided toward the destination because the pheromone will

completely disappear away from the origin. This type of algorithm is inappropriate

for solving the multi-objective path-covering problems. Instead, the proposed ACO

has strong capability for path optimization by incorporating a number of strategies

(e.g. the use of direction function and the modifications of pheromone updating).

The use of the utility function is crucial for adapting ACO to path optimization.

This utility function could be conveniently modified according to domain

knowledge without altering the structures of the ant algorithm. This flexibility is

desirable as it enables the model suitable for various applications.

The proposed model has been tested by using hypothetical and real data sets.

There is a question if this proposed ACO model will produce a result converged

towards a local optimum. In most situations, the verification is very difficult because

the optimum is unknown. Some hypothetical data with typical population

distribution can be used to examine the optimization effects. In this study, the

first two data sets have known results because of the typical population distribution.

The comparison indicates a strong concordance between the simulation results and

the known results. The difference is only 0.89% in terms of the utility value.

Although the population surface is quite complex for real data, the greedy

heuristic of distributed ants yields a good convergence rate (stabilized after 150–200

iterations) in the optimal path search. Moreover, the proposed method can produce

quite stable results from repeated simulations. There are also no significant changes

of optimization results if the movement direction is reversed from forward walking
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to backward walking. The standard deviations are very small for these repeated

simulations.

Comparisons have been carried out between this proposed ACO method and

conventional methods. However, conventional methods are not straightforward for

the optimization on the raster surfaces. Two modified Dijkstra methods, the simple

Dijkstra and the Dijkstra-buffer, are used for the comparison. The analyses indicate

that the proposed ACO method can yield higher utility values than the simple

Dijkstra and the Dijkstra-buffer methods by 28.3 and 23.1% respectively. It is

because the Dijkstra methods have difficulties in dealing with the multi-objective

issue on raster space.

This study only uses two common objectives, the maximum service coverage and

the minimum travel distance, for defining the utility function. Future studies should

focus on using more than two objectives since numerous constraints and spatial

variables should be considered for solving real-world problems. A linear weighted

combination could be used to define the utility function so that more than two

objectives can be incorporated.
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